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Abstract

The ethological approach is used to study naturally occurring behavior. In the modern 
world, many such behaviors are connected to, and recorded by, a wide array of digital 
services (e.g.,  social networking, information search, closed-circuit television). How 
can ethological concepts be applied to help us characterize the environment in which 
humans live? What aspects of the ethological approach can guide us to obtain measures 
captured directly from digital data generated by our everyday activities? What kinds 
of models do we need to understand how human behaviors/activities can be inferred 
from the physical and built environment? This chapter explores the bidirectional nature 
of these relationships; namely, how individuals create their environment, and how the 
environment shapes the individual. It discusses how to proceed from observation and 
 data sampling to  knowledge extraction and  causal inference. The complementary nature 
of common and specifi c are addressed as well as the challenge of integrating niches at 
both physical and social levels. Finally, all these concepts and associated methods are 
illustrated through a hypothetical study.

Refl ecting on Observation

What we observe is not nature itself, but nature exposed to our method of ques-
tioning. —Werner Heisenberg (1958)

The early ethologists Karl von Frisch, Konrad Lorenz, and Nikolaas Tinbergen, 
relied on observations as their core method of inquiry. After careful observa-
tion, they would fully describe the behaviors of interest. Then, as a second 
step, they would contemplate the function of these behaviors, assessed through 
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a process of classifi cation of possible behaviors, fi eld experiments, and com-
parison of behaviors within and across contexts or species. Tinbergen (1963) 
argued that behavior could be explained on four levels: ontogenetic, phylo-
genetic, proximate (immediate cause), and ultimate (evolutionary reasons). 
By systematizing their observations and focusing on the more fi xed behav-
iors, they could easily replicate their fi ndings. While watching, they wondered 
about the parameters of the behavior and conducted fi eld experiments from 
which they could determine proximal causes. For example, one of Tinbergen’s 
experiments involved understanding how digger wasps locate their home bur-
row after fl ying away in search of food (Tinbergen 1972). He conducted a 
series of experiments that involved placing a pinecone at the burrow entrance 
as the wasps were leaving and then moving it to a nearby location while the 
wasps were away. Upon their return, the wasps fl ew to the relocated pinecone 
rather than to their burrow entrance. In this way, Tinbergen discovered that 
digger wasps use landmarks to identify their burrow.

Another important study by Tinbergen focused on courtship in stickleback 
fi sh (1952), where he identifi ed the specifi c behaviors of the male to which its 
prospective mate responded. While this may seem anecdotal, this led to the 
creation of one of the fi rst ethograms (i.e., a comprehensive list, inventory, 
or description of the behavior of an organism) (Figure 2.1a), the key tool of 
ethology. Eibl-Eibesfeldt adopted these same principles of detailed observa-
tion coupled with experimental causal inference when beginning the fi eld of 
human ethology, focusing on the structure of human behavior from recorded 
observations of people living in diverse settings around the world (Eibl-
Eibesfeldt 1989). Since then, the fi eld has grown considerably to encompass 
a wide range of activities, highlighted by the International Society for Human 
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Figure 2.1 Two types of ethograms: (a) A traditional one showing four levels of in-
tensity during the excavation of sand by the three-spined stickleback (Gasterosteus 
aculeatus) (Tinbergen 1951). Intensity ranges from minimal (top) to maximal (bottom); 
numbers indicate the sequence of behaviors: (1) swimming, (2) digging sand for a nest 
pit, (3) losing sand through the gills, and (4) spitting out the sand. (b) An example of a 
digital ethogram based on a user–tweet interaction model (after Belkaroui et al. 2015), 
showing the six canonical behaviors (arrows) on the social media network Twitter/X.
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Ethology. Recently, the interdisciplinary fi eld of computational ethology has 
emerged at the crossroad of physical computer and life sciences. Here, the idea 
is to leverage recent progress in  machine learning to create ethograms through 
automatic detection and analysis of behavior while still using individual-level 
behaviors as the main unit of observation (Anderson and Perona 2014). In this 
chapter,  we focus on digital ethology, which relies on large-scale digital data 
coupled with geocoding of physical and social environments. In this respect, 
individual-level behaviors are aggregated at the level of geospatial units, thus 
guaranteeing better safeguarding of the  privacy of individuals while allowing 
researchers to examine  human–environment bidirectional relationships.

Ethologists observe behavior and ponder about its function. So, when 
Tinbergen watched the  digger wasps, he saw them fl y in a pattern over the bur-
row as they emerged, as well as before they reentered the burrow. After extensive 
observation, he was able to draw the pattern in which they fl ew. He wondered 
why they fl ew like that, under those circumstances. Through fi eld experiments, 
he determined the proximate cause: the digger wasps encoded features of the 
landscape that identifi ed their own burrow. Behavior is what is observed, and 
the construct is either an explanatory or a functional mechanism. The docu-
mentation of behaviors allows the ethologist to determine ethograms. Current 
ethologists develop ethograms of select behaviors to answer specifi c questions. 
The constellation of behaviors found to be related to a specifi c outcome measure 
might therefore constitute a construct, such as environmental variables related 
to an increased risk for depression. Interestingly, ethology can also gather infor-
mation from the constraints of those behaviors (see Figure 2.1a).

Digital ethology poses unique challenges that must be managed if we are 
to generate an ethogram. Figure 2.1b provides an illustration of how a digital 
ethogram could be generated using the “tweets” with “infl uence” as the con-
struct of interest. Like a typical ethogram, Figure 2.1b shows the observed 
activity of Twitter/X users and the behavioral patterns that arise from their 
interactions. In this example, constraints are built into the Twitter/X platform; 
similar to the epigenetic landscape of Waddington (1957), constraints may 
also be embodied in the  physical environment through space, resources, and 
risks. Pallante et al. (this volume) demonstrate how such constraints infl uence 
the probability of engaging in a specifi c behavior, such as resolution or rec-
onciliation. Digital ethology could thus gather information about area-level 
constraints on certain behaviors or activities coming from other domains, such 
as the built environment (e.g., accessing “resources” such as food when stores 
are not nearby). A digital ethogram would contain selected digital data thought 
to represent area-level aggregates of behaviors, naturally occurring variations 
in these behaviors, and assumptions about their functional signifi cance and 
underlying mechanisms.

The creation of an ethogram implies a process of reduction and simplifi ca-
tion aimed at controlling and describing the observations. The boundaries that 
delimit a behavioral pattern underpin the quantitative approach in ethological 
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studies: the ethogram is meant to be the coding scheme that quantifi es the ob-
servations, which necessarily leads to a reduction of the variability observed. 
For the early ethologists, ethograms refer to the complete set of behaviors. In 
typical modern-day studies, especially in humans, it is nearly impossible to 
construct an ethogram of all behaviors. Thus, ethograms must necessarily be 
comprised of select behaviors of interest. Notwithstanding, ethograms are de-
scriptions of (parts of) the observed behavioral repertoire, aimed at capturing 
and explaining the variability of this repertoire in time and space.

Early in the development of an ethogram, ad libitum observations of be-
haviors are required (Altmann 1974). This means that an inductive approach 
must be taken, usually by nonsystematically recording the behavioral patterns 
observed in a group of animals. This helps the researcher to become familiar 
with and gain insights into the behavioral repertoire of the species. The ad 
libitum nature of such a sampling technique relies on the ability to collect as 
many observations as possible when behaviors, individuals, and time sessions 
are chosen without restrictions. The behaviors classifi ed into the ethogram are 
those that can be clearly described, follow a specifi c pattern, are limited and 
repeated over time, and are usually performed by several individuals in the 
colony. The recording of behaviors is conducted by naming and describing 
the specifi c behavioral patterns observed. These notes will turn into items of 
the ethogram.

Interobserver  reliability is a major concern for modern-day ethologists, es-
pecially since the behaviors under observation are not usually fi xed (i.e., with 
fi xed releasers and fi xed forms). Thus, after the development phase of an etho-
gram and before all observations are coded, a second independent  observer 
is trained to apply the ethogram to evaluate if the defi nitions of the behaviors 
included are clear enough to allow for their coding. This may lead to a modi-
fi cation of the original ethogram. Once agreement is reached at an acceptably 
high level (e.g., Bakeman 2023), the ethogram can be applied for the  data col-
lection. Modern-day ethologists use observational methodologies of observing 
systematically with well-defi ned ethograms, coding schemes specifying how 
observations are collected, as well as inter- and intra-observer reliability, etc. 
(For a review of observational methodology, see Bakeman and Quera 2011.)

Despite technical methods, one may still question how “reliability” diff ers 
from “subjectivity,” especially when qualitative and quantitative approaches 
are compared (for an overview of terms, see Appendix 2.1). This discussion is 
about the  quality of assessment procedures, including observations.  Reliability 
and  validity are the main characteristics of quality in quantitative approaches 
(Mays and Pope 2000). While quantitative methodology tries to objectify sub-
jectivity, qualitative methodology tries to represent the subjective meaning 
systems of the research participants. Because of this subjective component, 
qualitative methods need alternative  validation methods. Just as in quantitative 
methods, diff erent methods exist, but the rigor of a qualitative study is mostly 
represented by its trustworthiness, defi ned by the confi dence in the data.
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From Data Sampling to Knowledge Extraction

You cannot see things till you know roughly what they are. —C. S. Lewis (1943)

Data collection—the fi rst practical step in the journey—is  open to discussions 
about  validity and  reliability. Classic ethology relies on prolonged observa-
tions of activity in humans or nonhuman species from which the  observer can 
begin to identify distinct patterns (i.e., behavior) to build an  ethogram. Even in 
purely observational studies, the infl uence of the observer on the activity being 
observed, and hence the validity of observations, is often a matter of debate. 
This issue becomes even more complex when one attempts to access inter-
nal states (e.g., motives, salience attributions) that can be reported or inferred 
in human studies but only conjectured in nonhuman species. In all instances, 
whether research is considered “qualitative” or “quantitative,” the observer 
remains part of the observed in terms of the behaviors selected for observation, 
the instruments used to record behavior, and the attribution of function and 
cause. The reliability (i.e., consistent  reproducibility) of behavioral measures 
is also beset with diffi  culties as simply having a quantitative index of behavior 
is not suffi  cient.

The availability of technological platforms (e.g., video cameras, sensors) 
can minimize the perceived presence of the observer and aid in measurement 
reliability as they can provide quantitative estimates of behavior that minimize 
inter- and intra-rater variability. The role of the observer, however, remains 
integral to the process. For example, Twitter/X users are aware that their be-
havior is being observed and exploit this to make their behavior accessible to 
a large number of observers. Similarly, the use of video or  CCTV data to study 
human behavior, such as confl ict resolution, requires signifi cant observer input 
even though the observed are usually not aware that they are being recorded at 
the time. Often, members of a lab sit together in front of videotapes and discuss 
jointly what they observe and what the observed behavior could mean. Other 
methods involve triangulation and  respondent  validation. In data science, this 
triangulation weights the validity of a given approach by comparing it to other 
data, other technical approaches, or both (Oppermann 2000). In epidemiol-
ogy, a similar  triangulation is used (Lawlor et al. 2016), but validity can also 
be inferred from  counterfactual reasoning (Höfl er 2005). In both qualitative 
and quantitative research, it is essential that the research process, including 
the subjective perception of the researcher, is made transparent and conscious.

Digital ethology needs to adapt those diff erent approaches to data collec-
tion and evaluation that address the unprecedented scale of the data and their 
heterogeneity. Similar to other forms of ethology, the goal of  digital ethology 
is constant: to observe and ponder what is meaningful at diff erent functional 
levels for the problem under consideration. Whether it is precision medicine, 
understanding a mechanism, or identifying external stressors, all the previous 
scientifi c knowledge will partially constrain the search space of constructs and 
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measures. In this sense, before any data have been collected, some choices 
are already made, explicitly or even unconsciously. As there are no defi nitive 
answers to these issues, awareness and transparency are essential.

The road from data to knowledge passes through information before reach-
ing it and, hopefully, heads off  in the direction of wisdom. This road rarely fol-
lows a straight line, however, and to avoid getting lost en route, a map is useful. 
Data science is an informed exploratory process (Huber 1996). Intelligent data 
exploration requires a clear hierarchy of analysis plans, from the defi nition of 
which data structure (e.g., variable, relationship, model) should be considered 
to the choice of plan (or plan type, in the case of higher-level decisions) that is 
appropriate. Thereafter, one is faced with the problem of deciding between dif-
ferent plausible but not always consistent results produced by diff erent analyti-
cal procedures (e.g., least squares, resistant line, number of data partitions). In 
 optimization, the “units” or “domains” of analysis may vary by the predefi ned 
outcome. If a massive dataset is to be analyzed without the direct supervision 
of a human user, then a representation of the process conducted becomes an 
even more necessary component of the result. This is one of the key distinc-
tions between planning and other forms of search: the aim is to generate a 
sequence (or more complex combination) of operations, not simply a result.

It all starts with data and, in the case of digital ethology, with  big data. Big 
data is an umbrella term used to describe datasets whose size and structure are 
so large and complex that conventional computational tasks become unfea-
sible. The term is commonly associated with vast amounts of data, although 
it should not be constrained by such a narrow defi nition. Doug Laney (2001) 
defi nes big data with respect to the three Vs:

1. Volume, which refers to the size of the dataset in multiple dimensions 
(i.e., in the number of records or the number of recorded variables).

2. Velocity or the speed at which data is gathered and processed.
3. Variety, which describes the heterogeneity in the structure of data 

gathered.

Laney’s defi nition serves as a basis for many alternative defi nitions that often 
add additional Vs (e.g., veracity). Still, consensus is lacking on one specifi c 
defi nition. Independently of the defi nition to which one subscribes, a key point 
to keep in mind is that big data does not solely refer to size but entails various 
aspects of complexity within the data and data collection. Thus, for instance, it 
is entirely possible to have a big dataset with comparatively low volume, but 
high velocity and variety.

How then do we move from (big) data to knowledge? Data are usually con-
sidered as raw measures that have not yet been contextualized. Although the 
choice of recording one measure rather than another is already contextual, the 
switch from data to information is usually when those measures are contextual-
ized at the moment of analysis. In this sense, raw data are “dry” and one needs 
to “rehydrate the data” (Claudia Bauzer Medeiros, pers. comm.) to be able to 
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interpret it. Information emerges by moving from “raw” data to “minimally 
processed” (e.g., satellite images cleaned from artifacts) or “pre-processed” 
data (e.g., engineered features extracted from satellite images such as roads, 
sidewalks, and building types). The move from information to knowledge is 
then linked to the interpretation of the information and the generation of mean-
ingful claims. In a sense,  knowledge generation cannot happen solely based 
on analyses of information. It needs an outcome; that is, explanatory theories 
must be generated about a specifi c phenomenon. Big data might be considered 
as a catchall ethogram for all possible behaviors, but a more explicit  ethogram 
is needed to answer specifi c questions and extract laws that govern the associ-
ated phenomenon.

With big data come big analyses, and the technological progress in comput-
ing has enabled the fast-paced development of artifi cial intelligence methods 
such as  deep learning. A key issue in  machine learning is the  generalizability 
of the results to another context. In this respect, metadata are critical to un-
derstanding the link “who was collecting, how, why, and where?” (For further 
discussion, see Lovasi et al., this volume.) It is important for the sampling to 
be as representative as possible of the population of interest. Still, it is hard to 
guarantee the  representativeness of the sample regarding the whole popula-
tion, as the whole population is not a representation; it is a description (see 
Medeiros et al., this volume).  Knowledge extraction is thus not a monolithic 
activity; it can come from imposing or discovering structure.

What happens when no structure at all is imposed? Here, bioinformatics 
off ers some clues. Indeed, technological developments in genetics have driven 
a move from the traditional single-gene approach to a polygenic and even “om-
nigenic” perspective (Boyle et al. 2017). This new way of viewing the genome 
emphasizes the interdependence of genes and leverages new digital tools to 
measure holistic eff ects at the molecular level. In digital ethology, progress 
in artifi cial intelligence may induce a similar shift in ethogram construction, 
from considering a few discrete canonical behaviors to embracing all observ-
able behavioral patterns. The challenge becomes one of interpretability, since 
algorithms may detect and use behaviors that are imperceptible to the eye of a 
human observer. The result could outsmart traditional human ethology in pre-
diction, but at the price of having a clear inference of underlying mechanisms. 
Thus, beyond prediction, a clear challenge for digital ethology in knowledge 
generation remains the inference of causality.

Inferring Causality

You are smarter than your data. Data do not understand causes and eff ects; hu-
mans do. —Judea Pearl and Dana Mackenzie (2018)

Humans and, in particular, scientists often like causal explanations. The con-
cept of  causality has been debated for centuries by diverse disciplines that have 
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emphasized diff erent aspects of causality. For instance, sociology, anthropol-
ogy, and psychology place signifi cant emphasis on the context in which causal 
relationships are examined. Causality thus comes in diff erent fl avors and re-
quires diff erent approaches to assess it. In ethology, there are at least four dif-
ferent types: ontogenetic (caused by the development), phylogenetic (caused 
by the evolution of species), proximate (caused by immediate physiological or 
environmental factors), and ultimate (associated with goals and function from 
an evolutionary point of view; Tinbergen 1963). In a broader scientifi c context, 
three general classes of causality are usually specifi ed: direct, structural, and 
logical (Craver 2007). Direct and structural causality require, most of the time, 
an experiment (an empirical intervention with planned perturbation of the sys-
tem) or at least a quasi-experiment (the use of events that occur independently 
from the research planning but could nevertheless be exploited to infer how 
those events causally impact the system). While direct causality is associated 
with physical events and mechanisms in time (e.g., an earthquake destroyed a 
city), structural causality is associated with physical objects and mechanisms 
in space (e.g., the transportation system constrains the growth of the city). 
Finally, logical causality is independent of time and space since it relies on 
abstract propositions, reasoning, and implication.

In the case of big data, when trying to determine a causal link between 
variables A and B (i.e., “the presence of property A causes the likely presence 
of property B”), one invariably stumbles across known problems. For instance, 
when analyzing a given dataset D for causal links, one wishes to determine 
whether property A is necessary and suffi  cient for the (likely) presence of prop-
erty B. In this context, both “necessary” and “suffi  cient” are needed: without 
“necessary” we cannot deduce that A is the cause of B, and without “suffi  cient” 
we cannot deduce that B is the result of A. Though this is the method to deter-
mine causal links, it would be incorrect to infer from this that a causal link is a 
necessary and suffi  cient condition. Indeed, mathematically speaking, necessity 
and suffi  ciency is a characterization of equivalence, not implication or causa-
tion. So how can it be that we determine causation (itself a form of implica-
tion) by checking equivalence? Here, it is important to note that necessity and 
suffi  ciency are both determined with respect to the given dataset D. In other 
words, property A is necessary and suffi  cient for property B within the dataset 
D. This does not, however, mean that A is necessary and suffi  cient for B in all 
other datasets. In practical terms, this is the same as saying that there might be 
other settings where something other than A causes B as well.

This apparent discrepancy is precisely the gap between the  closed-world 
assumption (CWA) and  open-world assumption (OWA) (Reiter 1978). Under 
the CWA, inference is made with respect to a given dataset D: a statement is 
considered true if and only if it is true in D. For example, for a dataset contain-
ing three records of people—Anna, Bob, and Catherine—the statement “David 
is not a person” would be considered true. Under the OWA, a statement is 
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considered valid1 or true if and only if it can be proven to be true; that is, it is 
true for all possible datasets. In the previous example, “David is not a person” 
cannot be proven so it can be both true and false depending on context.

What does this have to do with the actual analysis of causality? Unless 
the dataset being analyzed provides an accurate description of the entire uni-
verse of discourse, there will always be a limitation to the relationships we can 
determine as causal via necessity and suffi  ciency (inference of probabilistic 
equivalence using the  CWA) and “actual” causation (inference of probabilistic 
implication using the  OWA), since we will never manage to prove that noth-
ing other than A can cause B. In a diff erent context, it might well be the case 
that C causes B. To summarize, necessity and suffi  ciency within a dataset only 
provide a tool for revealing possible causal links; they do not defi ne  causality. 
Though we will likely never be able to close completely the gap between the 
CWA and OWA, analysis of multiple datasets and access to big data describing 
a more complete view of the relevant data can narrow the gap.

In biomedical research, causality is usually considered when a change in 
one parameter (cause) within a system is associated with a change in another 
parameter or the wider state of a system (eff ect).2 We can consider two sub-
types of causality. First, idiographic causality concerns itself with causal rela-
tionships for specifi c units or events such as a group (considered as singular 
entities, regardless of how they are defi ned), an individual, or specifi c event 
(Molenaar 2004). For example, the idiographic approach to depression would 
focus on the cause of depression in a single individual without requiring or 
even being concerned as to whether the same causal factors may or may not 
apply to other people. Second, nomothetic causality is concerned with factors 
that are  generalizable to other contexts (i.e., individuals, groups, events), such 
as the causes of depression whenever and wherever it occurs.

Another aspect of causality refers to its nature, which is conventionally 
considered in terms of deterministic or probabilistic and necessary or suffi  cient 
(Khemlani et al. 2014). Deterministic causal relationships require that a change 
in a specifi c parameter (parameter A) is always followed by a change in an-
other specifi c parameter (parameter B). In probabilistic causality, “always” is 
replaced by “frequently”; in other words, a change in the parameter A increases 
the probability that a change in parameter B will occur. Such “causes” are 
referred to as “risk factors” or “enabling conditions” with the latter avoiding 
assumptions about the desirability of the eff ect. A causal relationship is consid-
ered necessary when a change in parameter B can never happen unless there 
is a change in parameter A. A causal relationship is considered suffi  cient when 
a change in parameter A can cause a change in parameter B, although changes 

1 Note: one refers to  validity under the OWA as opposed to truth.
2 “Cause” and “eff ect” may be named diff erently in other fi elds; for example, “exposure” and 

“outcome” in epidemiology or “independent variable” and “dependent variable” in psychology.
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in parameter B can occur through changes in other parameters (Rothman and 
Greenland 2005).

A further important dimension of causality is the criteria that need to be met 
to consider an association between changes in parameters A and B as cause 
and eff ect. The most infl uential set of considerations in the context of medicine 
was established by the British statistician and epidemiologist, Austin Bradford 
Hill (1965), and are

• strength of association, 
• consistency of association, 
• specifi city of association, 
• temporality, biological gradient (dose-response relationship), 
• biological plausibility, 
• coherence with previous knowledge, 
• experimental evidence (e.g., clinical trials, intervention studies includ-

ing natural experiments), and
• analogy (i.e., testing that there are analogous causal mechanisms in 

certain animal models and humans). 

Modern medicine and epidemiology tend to rely increasingly on  counterfac-
tual reasoning and related approaches to infer  causality (Höfl er 2005).

In the case of digital ethology (and many other fi elds), the problem of 
causality becomes more complicated because causality may be bidirectional, 
where changes in parameters A and B can reiteratively infl uence each other. 
For instance, our social and built environments form ecosystems that contrib-
ute to what has been termed “ social and structural determinants of health.” 
Thus, we both “receive” and “create” our environments, while codetermining 
what air we breathe, how many steps we take, how hot or cold we are, and 
what and who we see, hear, and interact with during our commutes (Paus et 
al. 2022). Ultimately, causality also moves across levels of organization, from 
the emergence of collective dynamics to the downward causation when indi-
viduals tune their behavior in response to estimates of collectively computed 
macroscopic properties (e.g.,  social inequality; Flack 2017).

Common and Specifi c

Brian: You’re all individuals!
Followers: Yes, we’re all individuals!
Brian: You’re all diff erent!
Followers: Yes, we are all diff erent!
Dennis: I’m not.
—Monty Python, from the Life of Brian (1979)

The availability of large-scale digital data has the potential to enable the inter-
rogation of behaviors across diverse  cultural, ethno-racial, and socioeconomic 
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human groups. Also of interest is how human behaviors may relate to behav-
iors observed in other species, such as nonhuman primates. Behavioral pat-
terns (either human or nonhuman) are typically assigned to diff erent constructs 
that are theoretically defi ned (e.g., attachment).

Diff erences between groups may arise at the theoretical meaning of a con-
struct. If constructs are theoretically deemed to be similar, diff erences may 
arise in the behaviors assigned to the construct in distinct groups (or species) 
or the measures developed to assess the construct in these distinct groups (or 
species). Further, even though the construct and context remain constant, there 
may still be diff erent measures for assessing this construct representing prefer-
ences or conventional practices among researchers. Establishing equivalence 
of constructs and measures is a prerequisite for comparative studies and a com-
plex task in itself because there is no universally agreed defi nition of what 
constitutes equivalence and how it can be established.

We advocate for the scheme provided by Hui and Triandis (1985), who 
consider equivalence between constructs at the conceptual, functional, item, 
and scalar levels. Conceptual equivalence requires that a construct has the 
same meaning across groups (or species). Functional equivalence requires 
that constructs have similar nomological properties across groups (i.e., same 
predictors, consequences, and correlates). Conceptual equivalence is conven-
tionally established through a process of building a theoretical consensus, 
whereas establishing functional equivalence involves statistical strategies that 
aim to identify common patterns of associations between constructs and their 
nomological properties across groups (or species). Item equivalence and sca-
lar equivalence can only be considered for constructs that are conceptually 
and functionally equivalent. Item equivalence refers to the instruments used 
to assess a construct and their goodness of fi t for that construct. Finally, scalar 
equivalence requires that the same instrument yields similar results when used 
in diff erent groups. Item and scalar equivalence can be assessed by a variety of 
methods including  reliability coeffi  cients, examination of the internal structure 
of an instrument, measurement invariance across groups, or using tools from 
item response theory.

For example,  attachment  is a construct that refers to a child’s relationships to 
their social partners and their embeddedness in their social world (e.g., Keller 
and Chaudhary 2017). It is crucial for a  child’s development of  trust—both 
in themselves as well as in others—and sense of self. Historically, research 
on attachment has focused on Western middle-class families, often described 
as  WEIRD (western, educated, industrialized, rich, democratic; Henrich et al. 
2010). In  these contexts, attachment typically unfolds within the framework 
of a nuclear family, where there is usually one primary caregiver, often the 
mother, engaging in exclusively dyadic interactions with the child. These in-
teractions, characterized by distal communication such as face-to-face inter-
action, language, and play with toys, are structured to foster psychological 
autonomy and self-consciousness in the child from an early age (Keller 2021). 
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This WEIRD perspective does not represent, however, the diverse nature of 
attachment across diff erent sociocultural contexts (Henrich et al. 2010; Keller 
and Bard 2017). In many non-WEIRD societies, including traditional farm-
ing, hunter-gatherer, and fi shing communities, childcare involves a more ex-
tensive network of caregivers, which may include up to 20 people, both related 
and  unrelated (Keller 2021). The mother, while often a central fi gure, may be 
one among many caregivers or even play a marginal role. In these settings, 
children’s interactions are mainly proximal, involving bodily based commu-
nication processes emphasizing rhythm and synchrony. These societies priori-
tize the development of a communal self,  teaching children to be integral and 
responsible members of their community, and often have hierarchical social 
structures that infl uence communication and interaction rules. This contrasts 
sharply with the WEIRD model of fostering individual autonomy and self-
reliance (Keller and Chaudhary 2017; Morelli et al. 2017).

Digital ethology, with its potential for analyzing large-scale digital data cap-
turing a wide array of behaviors, off ers a unique opportunity to examine how the 
construct of attachment is expressed and understood diff erently across cultures. 
By exploring behavior patterns in digital communication, digital ethology can 
reveal how attachment and socialization strategies are expressed across various 
cultures. This approach can also be relevant in examining the formation and 
expression of multiple cultural identities, especially in a globalized world where 
 migration plays pivotal roles (Garcia Coll and Marks 2011). Nevertheless, it is es-
sential to be aware of the potential for an even more narrow  bias toward the “digi-
tal WEIRD” subpopulation in digital ethology (i.e., the part of the WEIRD popu-
lation that is accustomed to digital technologies). This means ensuring that digital 
ethology does not simply reinforce the attachment models based on research 
conducted on Western societies, but instead captures the rich diversity of attach-
ment expressions globally. To obtain a more representative and comprehensive 
understanding of global behaviors, it is imperative to analyze digital interactions 
not only through the lens of advanced technologies prevalent in Western societies 
(e.g., expensive smartphones) but also through technologies and platforms used 
widely in non-WEIRD contexts. This includes focusing on more popular tools in 
developing countries (e.g., aff ordable mobile models) and exploring messaging 
apps and social platforms that are available as globally as possible (e.g., apps 
that are avoiding censorship). Thoughtfully applying the framework proposed 
by Hui and Triandis (1985) becomes particularly relevant in this context. This 
framework emphasizes ensuring that the construct of attachment is inclusively 
and consistently defi ned across cultures (conceptual equivalence), as its mean-
ing can vary signifi cantly. It is crucial for researchers to also verify that the role 
and signifi cance of  attachment behaviors are comparable across diff erent groups 
(functional equivalence). This includes adapting measurement tools, like ques-
tionnaires or digital analysis algorithms (item equivalence), to suit each cultural 
context and ensuring these tools yield consistent results (scalar equivalence) 
across various cultures. This approach, especially challenging in digital ethology 
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due to the diversity of online platforms and communication styles, demands care-
ful construction, adaptation, and validation of research methods. This process 
allows researchers to draw more reliable conclusions, recognizing the richness of 
cultural variations while maintaining scientifi c rigor and comparability of data.

Conclusion

Digital ethology is grounded in the established core methods of observation 
and knowledge extraction of traditional ethology yet it faces burgeoning chal-
lenges associated with large-scale digital data. Major challenges are associated 
with  causality, especially when humans are bidirectionally coupled to their en-
vironment: “…enough people participating in an individual activity can result 
in structural change and vice versa” (Lovasi et al., this volume, p. 33). This be-
comes obvious when certain behaviors have no meaning at the individual level 
(e.g., Gini index or synchronization phenomena). Thus, at the methodological 
level, we need to develop  “collective”  ethograms and mathematical tools to 
account properly for these niche constructions at ecological and social levels 
(Krakauer et al. 2020). In addition, at the legal and ethical level, we should 
keep in mind that  data  ownership can go beyond individuals, for instance, in 
the case of  Indigenous communities where communal structures override in-
dividual claims.
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Appendix 2.1: Glossary

Ascertainment bias,  diff erential recording of outcomes or imbalance screening for out-
comes among exposed individuals compared to unexposed individuals.

Convergent validity, often measured by applying diff erent tests and observational meth-
ods that intend to measure the same construct with the same individual or groups of 
individuals and test the consistency or interrelationship.

Discriminant validity assesses how much tests/other methods that are not intended to 
measure the construct in question, deviates/diff ers from assessments intended to 
measure the construct.  Reliability and  validity belong together.
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Dissemination area,  the smallest standard geographic area for which all census data are 
disseminated, usually a small area composed of one or more neighboring dissemina-
tion blocks (400–800 inhabitants).

Internal consistency means that individuals/groups respond consistently across items 
measuring the same construct. If you have a questionnaire measuring one construct, 
you can, for example, split the items and correlate the two sets. Challenges are, for 
example, the quality of formulation and preciseness of the items and the extent to 
which they measure the construct.

Inter-rater reliability in  which two trained raters observe the same situation, or the 
same videotape. Their agreement is statistically assessed, most simply in percent-
age, more usually with a Cohen’s Kappa coeffi  cient.

Outcome (variable) is an event or metric that captures a construct or a predicted behav-
ior. It is measured as categorical (nonparametric statistics), ordinal (nonparametric 
statistics), or continuous (parametric statistics) values.

Refl exivity means  sensitivity to the ways in which the researcher and the research pro-
cess have shaped the collected data, including the role of prior assumptions and ex-
perience, which can infl uence even the most avowedly inductive inquiries. Personal 
and intellectual biases need to be made plain at the outset of any research reports to 
enhance the credibility of the fi ndings.

Reliability  refers to the consistency of a measurement. Three types of consistency are 
usually considered: over time (test–retest reliability), across items (internal consis-
tency), and across diff erent observers/coders (inter-rater reliability).

Respondent  validation,  or “member checking,” includes techniques in which the in-
vestigator’s account is compared with those of the research subjects to establish the 
level of correspondence between the two sets. Participants’ reactions to the analyses 
are then incorporated into the study fi ndings.

Sampling Frame:

Test–retest reliability means measuring the same construct/variable at two diff erent 
points in time on the same individual or group of individuals and testing the cor-
relation of the two measurements. One challenge in this method is the potential for 
learning eff ects; for example, if the same items are used, participants might remem-
ber their previous responses, which can infl uence the consistency of the construct 
over time.

Triangulation  compares the results from either two or more diff erent methods of  data 
collection (e.g., interviews and observation) or, more simply, two or more data 
sources (e.g., interviews with members of diff erent interest groups). The researcher 
looks for patterns of convergence to develop or corroborate an overall interpretation.

Validity  refers to the extent to which a measure represents the variable or construct 
intended to measure. There are also diff erent kinds and diff erent ways to defi ne 
validity, most often it is convergent and discriminant validity.
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